
A Scientific Data Representation Through
Particle Flow Based Linear Interpolation

Yu Pan, Feiyu Zhu, Hongfeng Yu
Department of Computer Science and Engineering

University of Nebraska-Lincoln

{ypan, fzhu, yu}@cse.unl.edu

Abstract—Scientists often desire interactive visual analytics
services to efficiently and effectively study their large-scale scien-
tific data generated from simulations or observations. However,
as the volume of scientific data is growing exponentially, it
becomes increasingly difficult to achieve this goal for a typical
interactive visual analytics system nowadays. The bottlenecks in
visual analytics processes manifest in fetching time series data
in a continuous manner. Since the changes in scientific datasets
over a period of time are usually small and continuous, it is
possible to learn an optical flow based representation of such
dynamics. Therefore, the intermediate time steps of data can be
efficiently inferred at run time. However, the existing optical flow
determination methods cannot be directly applied to scientific
datasets due to the highly complex non-rigid transformations in
the feature space of scientific datasets. In this paper, we present a
new method, named particle flow, that can capture the inherently
complex dynamics of scientific datasets. We can effectively
reconstruct any intermediate frames by interpolating the starting
and ending frames using the resulting particle flow. We have
also demonstrated that our approach can be effectively applied
in data reduction for scientific datasets. Extensive experiments
are conducted to show the accuracy and the efficiency of our
approach over existing methods.

Index Terms—scientific data, visualization, data representation

I. INTRODUCTION

Large-scale scientific data visualization has become increas-
ingly important for scientific studies in different fields. However,
analyzing large-scale scientific data is still challenging, mainly
due to the resources that need to accommodate the sheer size
of data. Data reduction is recognized as a feasible solution
for visualizing and analyzing large scientific data. Example
approaches of data reduction include sampling, compression,
and data transformation. For a time-varying scientific dataset,
a common strategy is to compress the data in the time domain
for data reduction. Data at a certain time point can be treated
as a frame. If two key frames can be used to predict the frames
between them, we may only need to store the key frames,
which can greatly reduce the size of data.

Interpolation methods for time-varying data have been of
great interests to researchers. In the field of video compression,
for interpolation of time-varying data (e.g., video frames),
optical flow has been invented to guide the synthesis of
frames [6]. This method is often called motion compensation,
in which I-frames are the key frames and P-frames are

the intermediate frames generated on the fly from I-frames.
A typical video compression standard is MPEG, which is
a blocked-oriented motion-compensation standard utilizing
optical flow between frames. A better quality of optical flow can
result in a more accurate interpolation of frames [5]. However,
optical flow has not been fully exploited in scientific data
visualization yet. The main reason is that traditional optical
flow based methods are usually used to track the movement
of rigid bodies. In a simulation-generated or sensor-observed
scientific dataset, objects or features (such as the movement of
fluid) are usually volatile and cannot be described by a rigid
body, and thereby the calculation of optical flow becomes a
very challenging problem.

In this paper, we present a novel method to generate a
modified optical flow within a time range of a scientific
dataset. We call this modified method particle flow. Given the
starting and ending frames of a time range, we can reconstruct
any intermediate frame between them using the starting and
ending frames, as well as the resulting particle flow. The main
contributions of our paper are as follows:

1) Our method does not rely on any feature description and
comparison as in traditional optical flow based methods,
and can be adapted to complex transformations of features
across data frames. Therefore, our method is suitable
for capturing and retaining feature dynamics in scientific
datasets, and facilitates us to effectively compress the
original large dataset.

2) We have conducted an extensive experimental study
to demonstrate the effectiveness of our approach and
the higher-quality reconstruction results compared to
the existing methods. We have also explored the main
parameters and provided guidance for a practical usage
of our approach.

II. RELATED WORK

Researchers have developed many compressed data represen-
tations for large-scale scientific datasets. Thompson et al. [16]
used hixels as a compact and information-rich representation
of large-scale data. Liu et al. [11] used per voxel Gaussian
mixture models (GMMs) as a data representation to reduce the
amount of data needed, while still enabling real-time data access
and rendering. Discrete Wavelet Transform (DWT) has been

used to reduce the data into a limited number of coefficients
and has been used for volume rendering [14]. Chaudhuri et
al. [2] reduced raw data into a compressed structure using an
encoding technique. Chen et al. [3] improved data accuracy of
temporally down-sampled data and modeled the error with a
Gaussian distribution. Distribution-based representations have
been used to alleviate artifacts and were able to provide a
confidence measure in visualization tasks [17]. Most of these
methods consider the spatial representations of volume data,
without considering the possible temporal compression. For
temporal compression, a difference based method can be used
to compress the data by taking advantage of the similarity of
temporally neighboring data [13]. Although this method can
reduce the size of data, the differences still need to be stored.

Traditional frame interpolation methods contain two steps,
motion estimation and pixel synthesis. Motion is commonly
represented using optical flow. In the field of computer vision,
optical flow is an effective way to reduce data temporally
using data at two time points to predict the data between these
time points. The quality of flow-based interpolation depends
on the accuracy of the flow, which is often challenged by
large and fast motions. There are many optical flow techniques
available. The Gunner Farnebäck method approximates the
neighborhood of frames by polynomials [4]. The Lucas-Kanade
method [12] regards image patches and an affine model for
the flow field. The Horn-Schunck method [7] optimizes a
function based on residuals from the brightness constancy
constraint and a particular regularization term representing
the expected smoothness of flow field. FlowNet is capable of
finding optical flow estimation using a layer that correlates
feature vectors at different image locations [5], [8]. PWCNet
uses warped features of images to construct a cost volume,
which is processed by a neural network to find the optical
flow [15]. Zhou et al. have proposed a method that employs
neural networks to warp input pixels to create a novel view.
Their method can warp individual input frames and blend them
together to produce a frame between the input ones. The deep
voxel flow algorithm has been used to address the problem of
synthesizing new video frames, either between frames or behind
frames. SuperSloMo [9] uses a bi-directional optical flow. The
flows are linearly combined to approximate the intermediate
optical flow. However, optical flow has not been fully exploited
for scientific applications.

III. PARTICLE FLOW BASED REPRESENTATION

We first introduce the background of optical flow (Sec-
tion III-A). Then, we formalize the problem (Section III-B)
and introduce the framework of our model (Section III-C).
We present the assumptions of our model (Section III-D), and
use a modified optical flow for linear interpolation (Section
III-E). We detail the objective function used to train our model
(Section III-F).

A. Background

1) A Brief Introduction to Optical Flow: Optical flow
expresses patterns of motion observed in a visual scene (e.g.,

video) and can be represented as a vector field where each point
has a direction indicating the motion of this point. For each
adjacent pair in a series of continuously changing images or
frames, the general goal of the construction of optical flow is to
compute the velocity of each point. This velocity information
typically is obtained by estimating the movement of feature
objects across frames. Traditional approaches to determine
optical flow include phase correlation, block-based methods,
differential methods, and discrete optimization methods based
on prior definitions of features. Recently, learning-based
methods become increasingly popular and some of them have
outperformed traditional methods, in particular when features
are not well defined [6].

Once we obtain optical flow, it can facilitate us to conduct
a set of computer vision operations, such as motion detection,
object segmentation and tracking, distance detection, and so
on. Optical flow can also be used in video compression, in
which the intermediate video frames are inferred based on
the key frames and their optical flows. This application is
closely related to our research and it is interesting to explore
the possibility of applying optical flow based methods to derive
compressed scientific data representations.

2) Research Challenges: An intuition is that we can extend
optical flow to express the dynamics of scientific data, given
the data similarity between videos (e.g., a series of 2D images)
and scientific data (e.g., a series of 3D volumes). However,
this is a non-trivial task.

For traditional optical flow methods, they perform optimally
when a feature is close to a rigid body, where the feature
may move dynamically but its attributes (e.g., shape and
texture) are relatively stable. This is most applicable for
computer vision applications. However, in a scientific dataset,
features can be dramatically changed in their attribute space,
and typically are not rigid bodies. Therefore, if we directly
apply traditional methods, the resulting optical flow cannot
meaningfully capture the underlying dynamics of features. For
example, the Gunner Farnebäck method [4] uses a quadratic
polynomial to approximate the neighborhood of each pixel,
and uses polynomial expansion to bring in the term of
optical displacement (i.e., optical flow) along each direction.
The resulting optical flow is subject to the minimization
of an objective function. The basic assumption of Gunner
Farneback’s algorithm is that the feature in a neighborhood is
stable across frames and thus can be expressed by the same
quadratic function. Again, this assumption may not apply to
scientific datasets because of typical non-rigid transformations
between two data frames. This can prevent Gunner Farnebäck’s
algorithm from managing to match corresponding points.

Recent learning-based optical flow methods train end-to-end
deep models to output optical flows using the input of two
images. One example is PWC-Net [15] that first derives an
image pyramid using Convolutional Neural Networks (CNN),
and warps the second image to the first one for each level of
images pairs in the image pyramid. A cost volume layer is
then applied to calculate the dissimilarity of the first image
and the warped version of the second image. Finally, an

Fig. 1: An illustration of our framework. Planes U and V
represent the starting and ending frames of a data clip of a
time-varying scientific dataset. We aim to learn the particle
flows (i.e., a modified version of optical flows) for both Planes
U and V (in dark yellow). The particle flow for an intermediate
frame Q (in light yellow) is estimated based on the flows on
Planes U and V. Then, the values on Plane Q (in light blue
with dashed line) are estimated as a linear interpolation of the
corresponding values in Planes U and V. Finally, we compare
the similarity of the reconstructed values and original ones
on Plane Q (in red windows). The learned particle flows are
subject to minimizing the similarity measurement.

optical flow estimator layer is applied to output the final
result for optical flow. The learning based methods mainly
have two disadvantages. First, they still rely on some forms of
feature comparison (e.g., the cost volume layer in PWC-Net) to
determine optical flows. Thus, they are most suitable for those
scenarios with rigid transformations. Second, as supervised
learning methods, they require a large amount of optical flows
as background knowledge, which may not be feasible for
scientific datasets.

We develop a modified version of optical flow, named
particle flow, which can exploit the advantages but reduce
the limitations of original optical flow approaches for scientific
applications. In our experimental study, we adopt Gunner
Farnebäck’s algorithm and PWC-Net as baseline to obtain
the optical flows and compare their performance with our
method. For comparison, we also bring in a naive fade-in and
fade-out method that linearly interpolates key data frames to
generate intermediate frames. Our particle flow solution can
achieve results superior to the existing methods for scientific
datasets.

B. Problem Formalization

Given a series of n data frames {d0,d1, ...,dt , ...,dn}, our
goal is to learn a concise representation of this series, a tuple
(D,F), where D = {d0,dn} and F = { f0→n, fn→0}. Here, d0
and dn are the starting and ending frames, and f0→n and fn→0
are the particle flows between the starting and ending frames,
respectively.

C. The Framework of Our Model

Our model can be considered as a representation learning
framework. For the representation of scientific data clips
(i.e., a series of time frames), there are two complementary
components:

1) Compression: obtain an appropriate optical flow based
representation.

2) Decompression: reconstruct the original data clip using
the representation.

We can plug-in existing optical flow methods for the compres-
sion component and conduct a linear interpolation along the
time axis to infer intermediate data frames for decompression,
which, however, is less optimal given the limitations of existing
optical flow methods for scientific datasets. Alternatively,
in this work, we holistically combine the compression and
decompression components, and directly consider the target
particle flows as trainable parameters that can be learned
through model optimization, which can facilitate us to capture
and represent the dynamics of scientific datasets. Figure 1
illustrates the framework of our model.

D. Assumptions of Our Model

For numerous types of scientific datatsets, such as those in
combustion science, plasma physics, and atmospheric science,
whether they are synthesized through simulations or collected
from sensors, we can consider moving particles as the cause
of the dynamics of these datasets. The spatial distributions and
temporal dynamics of scientific datasets are the reflection of
the motion of one or several kinds of particles that influence
various attributes of systems. With this idea in mind, we can
model a system as flows of particles in which each particle
has a different trajectory. We can even go further by imagining
some sort of abstract particles that fill the space. Here, we
call particles as movable pixels (or voxels for 3D volume). We
can think of the attributes of a dataset labeled on each pixel
such that we consider the attributes as the function of pixel,
instead of the function of time and space. Borrowed from the
terminology in the computer vision community, we name the
trajectories of these movable pixels as particle flow, which we
aim to learn from scientific datasets in this work. Particle flow
can be treated as a modified version of optical flow. However,
particle flow is different from optical flow in that particle flow
estimates the movement of particles at the pixel level instead
of estimating the movement of rigid objects at a higher level.
We believe particle flow is better suited for scientific datasets
where the movement is much more dynamic.

Since the time span of the data we try to learn the
representation from is relatively small, we can make the
following assumptions:

1) All the movable pixels in the starting frame still exist in
the ending frame.

2) The trajectories of these movable pixels within a small
time span are linear, and thereby can be expressed as
optical flow, which is a vector field.

3) The optical flow field changes smoothly with respect to
the spatial coordinates.

4) The optical flow field changes linearly within a small
spatial area.

5) The attributes on each movable pixel will not change
drastically within a small time span and also change
linearly within the time span.

Based on these assumptions, we can learn a much simpler
representation of the original data clips. The resulting repre-
sentation consists of only the starting and ending frames and
the optical flows between the starting and ending frames.

E. Particle Flow Based Linear Interpolation

Once we get this representation consisting of the starting
frame d0, the ending frame dn, the forward flow f0→t , and the
backward flow ft→0, we can synthesize all the intermediate
data frames using linear interpolation at runtime. For a data
frame dt , we can get an estimate d̂t as follows:

d̂t = (1− t
n
)�warp(d0, ft→0)+

t
n
�warp(dn, ft→n), (1)

where warp(·, ·) is a warping operation of the first augment
given the particle flow as the second argument. We use bi-linear
interpolation when a warped pixel falls in between the discrete
pixels. The � is an element-wise multiplication that conducts a
linear interpolation of the warped frames from both directions
based on the time t. This linear operation is in accordance
with our Assumption 4 in Section III-D.

Assume that we have the particle flows f0→n and fn→0
between the starting and ending frames, to get the particle
flows for an intermediate frame at t, ft→0 and ft→n, we need a
way to estimate them. Given our assumption that the particle
flow field is smooth and changes linearly within a small spatial
area, for each pixel in an intermediate frame, we can estimate
its flow based on the corresponding flow at the same position
in the starting and ending frames:

f̂t→0 =−wt
t
n
� f0→n +(1−wt)

t
n
� fn→0 (2)

f̂t→n = wt(1−
t
n
)� f0→n +(1−wt)(1−

t
n
)� fn→0 (3)

where wt is the mixture weight of flows for both directions:

wt =
fn→t � (1− t

n)

fn→t � (1− t
n)+ f0→t � t

n
. (4)

Here, we use the flows from two positions as reference points
and the mixture weight indicates that the impact of the flows
reduces as the distance between the reference point and the
considered point increases. Figure 2 illustrates our ideas on
estimating the flows for intermediate frames.

F. Particle Flow Learning

We aim to learn the forward flow f0→t and the back-
ward flow ft→0 from the original series of n data frames
{d0,d1, ...,dt , ...,dn}. We transfer the learning process to solv-
ing an optimization problem, where we define a set of objective

Fig. 2: An illustration of intermediate particle flow estimation.
The circles in solid line represent the pixels at integer positions
and the circles in dashed line represent virtual pixels at non-
integer positions. The bi-directional particle flows of the yellow
pixel A in the intermediate frame at T = t is estimated based
on the particle flows of As in the frames at T = 0 and T = n.
The particle flow of A in the frame at T = 0 points to E in
the frame T = n through a virtual point D in the frame at
T = t. The particle flow of A in the frame at T = n points
to B in the frame at T = 0 through C in the frame at T = t.
We first calculate the bi-directional particle flows for C and D,
and estimate the particle flows for A in the frame at T = t by
linearly interpolating them based on their distances to A. Again,
the estimated particle flows for A point to virtual pixels in
the frame at T = 0 and T = n, which can be further estimated
using bilinear interpolation.

functions according to our assumptions in Section III-D and
minimize these functions with respect to the forward and
backward flows.

1) Objective Functions: Based on our discussion in Section
III-E, we can easily determine that one term of our objective
function is the reconstruction loss:

Lr =
1

m−1

m−1

∑
t=1

1
N
‖dt − d̂t‖2 (5)

where m is the number of all the intermediate data frames, N is
the number of pixels in each data frame, and ‖ ·‖2 is L2 norm.
Lr denotes the average difference between reconstructed data
frames and original data frames.

Since we assume the particle flows of both directions are
smooth, we also add a smoothness loss:

Ls = ‖∆ f0→n‖1 +‖∆ fn→0‖1 (6)

where we compute the Laplacian of both forward and backward
flows to measure their smoothness. A smaller Laplacian value
indicates a smaller local variation of a flow. We neglect the
direction of Laplacian, and add their L1 norm together to
measure the combined smoothness of both flow directions.

In addition, as we assume the trajectories of the movable
pixels are linear, this means for each of the movable pixels in
the intermediate frames, the flows in both directions, ft→0 and
ft→n, should be opposite. Here, we make the angle between the

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5

(g) forward flow (h) t = 1 (i) t = 2 (j) t = 3 (k) t = 4 (l) backward flow
for t = 0 for t = 5

Fig. 3: Original and reconstructed data frames for the Isabel hurricane dataset. In the first row, the images a to f show the
original data frames from t = 0 to t = 5. In the second row, the images g and l show the particle flows for t = 0 and t = 5,
and the images h to k show the reconstructed intermediate data frames. In each image of data frame, higher vapor values
correspond to red or purple regions, and lower vapor values correspond to blue or gray regions. In each image of particle flow,
a vector value is mapped to a unique pseudo color. The reconstructed frames are visually close to the original frames.

two vectors as near to 180° as possible and introduce trajectory
loss:

Lt =−
dot(ft→n, ft→0)

‖ f0→n‖2‖ fn→0‖2
(7)

where the numerator computes the pixel-wise dot product of
the flows that is divided by the pixel-wise L2 norm of the flows
from both directions. This gives the cosine of the angle of the
two vectors. An angle closer to 180° leads to a smaller Lt .

At last, as we assume the attributes on each movable pixel
will not change drastically, we warp the original starting frame
d0 to estimate the end frame using fn→0, and also warp the
original ending frame dn to estimate the starting time point
using f0→n. Then, we compare the estimated frames with the
original ones, which we name as attribute loss:

La =
1
N
(‖d0−warp(dn, f0→n)‖2 +‖dn−warp(d0, fn→0)‖2)

(8)
where N is the total number of pixels in each data frame.

Thus, our final objective function is:

L = Lr +λsLs +λtLt +λaLa (9)

where λs, λt , and λa are hyperparameters that control the quota
of each term in the objective function. We empirically set
λs = 0.6, λt = 0.1, and λa = 0.1, which provides appropriate
results in our work.

2) Optimization: Our optimization model sets the forward
and backward particle flows f0→n and fn→0 as model parame-
ters, and optimizes the objective function L to learn the particle
flows. The resulting f0→n and fn→0, together with the first and
last frames d0 and dn, will be used as a concise representation
of the entire set of data frames {d0,d1, ...,dt , ...,dn}.

To solve this optimization problem, we use the conventional
gradient descent method. We initialize f 0

0→n and f 0
n→0

using random vector values, and then iteratively refine them.
Specifically, in each iteration i, we have

f i
0→n = f i−1

0→n− γ
∂L

∂ f i−1
0→n

, (10a)

f i
n→0 = f i−1

n→0− γ
∂L

∂ f i−1
n→0

, (10b)

where γ is a learning rate controlling the convergence rate. We
stop the learning process when the refinement is less than a
specified threshold. In our implementation, we use the built-in
gradient descent functionality of TensorFlow [1] to carry out
this optimization process.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets used in our
experiments and the implementation details in Section IV-A,
and conduct an extensive experimental study on the effective-
ness of our model in Section IV-B. We show the experimental
results for the efficiency of our model in Section IV-C, and
explore the impacts of several key factors of our model in
Section IV-D.

A. Datasets and Implementation Details

We have tested our algorithm on two datasets, an Isabel
hurricane dataset and a vortex dataset. The Isabel hurricane
dataset was generated by the National Center for Atmospheric
Research (NCAR) and made available through the IEEE
Visualization 2004 Contest. It has a 500× 500× 100 spatial
resolution and 48 time steps in total. We use the variable vapor

of this dataset in our test. The data value ranges between 0
and 0.02368. The vortex dataset is generated from a pseudo-
spectral simulation of vortex structures. It has a 128×128×128
spatial resolution and 100 time steps in total. To facilitate our
comparison between our method and the existing methods, for
the vortex dataset, we use a 2D spatial slice at a fixed position
from each time step to obtain a 2D data series in our study.
The data value ranges between 0 and 7.5.

We learn the particle flows using Python 3.6 and Tensorflow
1.2 [1] on a single machine that has an Intel Core i7-6700K
CPU, an NVIDIA GeForce GTX 980 Ti GPU, and 16GB
DDR4 memory. For each dataset, we choose a different length
of data clip to test our method. For each data clip, we optimize
our model using Adam optimizer [10] with a learning rate γ of
0.001 for 1000 epochs. For the resulting representation (i.e. the
starting and the ending frames, and the forward and backward
flows), we further compress them using Run-Length Encoding
(RLE) to obtain a higher compression ratio.

For each dataset, since the majority of the variable values
fall near 0 that is the minimal value, it is difficult to learn an
optical flow directly from the raw data. We can think of those
small values as noises affecting the accuracy of our learning of
meaningful dynamics. Hence, we first preprocess the datasets
by clipping the values within specified lower and upper bounds.
The experiment results show this preprocessing procedure can
enhance the effectiveness of our method. We will also discuss
the impact of different choices of the lower and upper bounds
on the results in Section IV-D3. Otherwise, if not specified
explicitly, we validate our methods using 8-frame data clips
for the vortex dataset with a lower bound 0.5 and an upper
bound 7.5, and using 6-frame clips for the Isabel hurricane
dataset with a lower bound 0.001 and an upper bound 0.016.

Figure 3 shows a demonstration of our method on the Isabel
hurricane data. Given an original sequence of data frames in
Figure 3(a) to (f), we learn the forward and backward particle
flows, as shown in Figure 3(g) and (l). We reconstruct the
intermediate frames, Figure 3(h) to (k), using the starting and
ending frames, as well as the particle flows. We can perceive
that the reconstructed frames are visually close to the original
frames in Figure 3.

B. Effectiveness of Our Method

We qualitatively and qualitatively study the feasibility and
effectiveness of our method. Our experiments show that our
method can learn a reasonable representation for a data clip.

1) Reconstruction Accuracy: We first compare the recon-
struction accuracy of our method with the existing optical
flow approaches including the PWC-Net method [15] and the
Gunner Farnebäck method [4]. We also consider a naive fade-in
and fade-out method that constructs an intermediate frame by
a simple linear interpolation of the starting and ending frames.

We use three different metrics to measure the similarity
between reconstructed frames and original frames:
• Peak Signal-to-Noise Ratio (PSNR):

PSNR = 20 · log10
MAX√
MSE

,

TABLE I: Comparison of the reconstruction accuracy.

The vortex dataset
Method PSNR SSIM NMSE
PWC-Net 24.86 0.77 0.22
Gunner Farnebäck 22.27 0.70 0.29
Fade-In-Fade-Out 24.36 0.74 0.23
Our Method 33.40 0.96 0.07

The Isabel dataset
Method PSNR SSIM NMSE
PWC-Net 26.83 0.71 0.08
Gunner Farnebäck 26.57 0.66 0.09
Fade-In-Fade-Out 25.44 0.57 0.11
Our Method 31.11 0.82 0.05

(a) Starting frame 0 (b) Ending frame 7

(c) Starting frame 0 (d) Ending frame 5

Fig. 4: The first row shows the original starting and ending
frames, 0 and 7, of the vortex dataset. The second row shows
the original starting and ending frames, 0 and 5, of the Isabel
dataset.

where MAX represents the maximum value in the original
frame and MSE indicates Mean Square Error between
the original and reconstructed frames. PSNR measures
the normalized pixel-wise differences with respect to the
maximum value.

• Structural Similarity Index (SSIM) [18]:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
,

where x represents the original frame, y represents the
reconstructed frame, µx and µy indicate the mean values
of x and y, σx and σy indicate their standard deviations,
and c1 and c2 are two variables used to stabilize the
division with a weak denominator. SSIM measures the
human perceived difference between x and y.

• Normalized Mean Square Error (NMSE):

NMSE =
MSE
µxµy

,

(a) Ground truth (frame 1) (b) Ground truth (frame 4)

(c) PWCNet (frame 1) (d) PWCNet (frame 4)

(e) Gunner Farnebäck (frame 1) (f) Gunner Farnebäck (frame 4)

(g) Fade-In-Fade-Out (frame 1) (h) Fade-In-Fade-Out (frame 4)

(i) Our method (frame 1) (j) Our method (frame 4)

Fig. 5: The first row shows the original frames 1 and 4 of the
vortex dataset. The rest of the rows show the reconstructions
of the frames 1 and 4 based on the starting and ending frames
using different methods.

(a) Ground truth (frame 2) (b) Ground truth (frame 4)

(c) PWCNet (frame 2) (d) PWCNet (frame 4)

(e) Gunner Farnebäck (frame 2) (f) Gunner Farnebäck (frame 4)

(g) Fade-In-Fade-Out (frame 2) (h) Fade-In-Fade-Out (frame 4)

(i) Our method (frame 2) (j) Our method (frame 4)

Fig. 6: The first row shows the original frames 2 and 4 of the
Isabel dataset. The rest of the rows show the reconstructions
of the frames 2 and 4 based on the starting and ending frames
using different methods.

Fig. 7: Comparison of the PSNR on the vortex dataset (top)
and the Isabel dataset (bottom) by frames.

where x represents the original frame, y represents the
reconstructed frame, and µx and µy indicate the mean
values of x and y. NMSE measures the normalized pixel-
wise differences with respect to the mean value of the
original and reconstructed frames.

Table I demonstrates the reconstruction accuracy for both
datasets. For each dataset and each method, we reconstruct
each intermediate frame within a data clip using the starting
and ending frames, compute each metric for each reconstructed
frame, and calculate their average. For PSNR or SSIM, the
higher a value is, the higher the accuracy is, and contrary for
MSE. We can see that our method outperforms all the baseline
methods in terms of all the metrics.

Figure 4 shows the original starting and ending frames for
the vortex and Isabel hurricane datasets using volume rendering.
Figures 5 and 6 show a qualitative comparison of different
methods on the reconstructed frames of both datasets. The
boxes highlight a few selected differences between the ground
truth and the reconstructions of different methods. We can
clearly see that our method can reconstruct intermediate frames
that are most visually similar to the ground truth. For the vortex
dataset, all methods can obtain appropriate reconstructions of
the frame 1 that is close to the starting frame 0. However, for
the frame 4 that is in the middle of the data clip, the existing
methods tend to generate a reconstruction that is a mixture
of the starting and the ending frames. This is because these
methods mainly compare the features in the starting and ending
frames to generate the optical flows that might not capture
highly intermittent transient features. Our method makes use

Fig. 8: Comparison of the statistical accuracy of reconstruction
on the vortex dataset (top) and the Isabel dataset (bottom).

of the intermediate frames, and thereby can generate a more
accurate optical flow and the corresponding reconstructions.
The similar results can be also perceived in Figure 6.

The quality of reconstruction also depends on where an
intermediate frame is. We conduct experiments to demonstrate
the reconstruction accuracy as a function of time steps. Figure 7
shows the PSNR results for both datasets. We can see that
the more a frame is close to one end, the more accurate the
reconstruction result is. This is because of the fact that our
linear trajectory assumption in Section III-D is not perfect, and
the pixels on an intermediate frame far from both ends tend to
deviate from the linear trajectory. However, we can see even
the frames with the lowest reconstruction accuracy using our
method significantly outperform those frames with the highest
reconstruction accuracy using other baseline methods.

2) Statistical Accuracy: From the data analyst’s perspective,
the statistical features are equally important. Here we study
the statistical accuracy of our method. Specifically, we conduct
experiments to show how well the distribution of values
is recovered for each time frame in terms of Kolmogorov-
Smirnov (K-S) distance, Kullback-Leibler (K-L) divergence,
and Bhattacharyya Distance (BD). All the metrics indicate
higher statistical accuracy when they are smaller. The possible
best value for K-S and K-L is 0, meaning the original
distribution and the reconstructed one are the same.

We compare our method with other baseline methods. Figure
8 illustrates the comparison results. We can see our method
outperforms all the baseline methods with respect to all the
metrics and can achieve a high distribution similarity for each
dataset. For example, for the vortex dataset, the K-S value of our
method outperforms PWC-Net, Gunner Farnebäck, and Fade-
In-Fade-Out by 63%, 120%, and 50%, respectively. Similar
comparisons can be also obtained for the other metrics. For
both datasets, the K-S and K-L values of our method are closer
to 0, indicating the reconstructed frames of our method is very

similar to the original ones.

C. Efficiency of Our Method

One of our objectives is to get a concise representation of a
data clip, which can be considered as a compression version of
the original one. As our method is a lossy compression method,
so intuitively, the higher the compression ratio is, the less
information will be kept. Here we compare the reconstruction
accuracy under different compression ratio. Table II illustrates
this effect as the length of the data clip increases.

TABLE II: Reconstruction accuracy of the vortex dataset and
the Isabel dataset under different compression ratio.

The vortex dataset
Clip length Compression ratio PSNR SSIM MSE
4 25.3% 43.636 0.998 0.015
5 21.1% 41.087 0.991 0.020
6 18.1% 38.215 0.981 0.038
7 15.8% 35.091 0.965 0.060
8 14.1% 33.401 0.956 0.075
9 12.7% 31.640 0.940 0.096
10 11.5% 30.456 0.925 0.111

The Isabel dataset
Clip length Compression ratio PSNR SSIM MSE
4 25.3% 33.036 0.894 0.041
5 21.1% 31.625 0.847 0.051
6 18.1% 31.117 0.824 0.055
7 15.8% 30.432 0.793 0.060
8 14.1% 29.386 0.749 0.068
9 12.7% 28.78 0.728 0.073
10 11.5% 28.16 0.710 0.080

Typically, a PSNR value above 30 indicates a reasonable
reconstruction result. For the vortex dataset, the reconstruction
of our method is closer to the original when the compression
ratio is above 11.5%. For the Isabel dataset, to obtain reasonable
reconstructions, the compression ratio is ideally above 15.8%
for our method.

We also compare the compression ratio between our method
and the Run-Length Encoding (RLE) method that is a conven-
tional data reduction method. We use RLE to directly compress
each frame within a specified clip length.

Fig. 9: Comparison of the compression ratio between our
method and RLE on the vortex dataset.

Figure 9 shows a comparison of the compression ratio
between our method and RLE on the vortex dataset. We can see
that the compression ratio of our method decreases dramatically
as the clip length increases. In contrast, RLE keeps almost the

same compression ratio with increasing clip length. Also, our
method has a much better compression ratio than RLE without
losing much accuracy.

D. Parameter Analysis

In this section, we further study the impact of various factors
on the final results, which will be helpful for us to understand
some of the attributes of our model.

1) Impact of Temporal Resolution: For a data clip with a
fixed time span (i.e., with the same starting and ending frames),
we test different temporal resolutions for the intermediate data
frames. That is we learn the particle flows using different
numbers of intermediate data frames, and compare their
reconstruction accuracy. These selected intermediate data
frames are evenly distributed within the time span.

Table III shows the result using the vortex dataset for a
clip length of 8, which agrees with our intuition: the more
intermediate frames we use during learning, the better the
quality of the representation is. For the lowest resolution, we
use only the starting frame and the ending frame for learning
and thus our objective function has no Lr term.

TABLE III: Impact of temporal resolution on reconstruction
accuracy for the vortex dataset.

of Intermediate Frames PSNR SSIM MSE
0 24.804 0.770 0.206
1 30.172 0.833 0.099
2 32.012 0.941 0.085
3 33.006 0.951 0.079
4 33.401 0.956 0.075

For the vortex data, Table III shows that our method needs
at least two intermediate supporting frames to gain appropriate
reconstruction accuracy (i.e., PSNR is larger than 30). When
using more intermediate frames, the reconstruction accuracy
keeps at a higher rate. This means there are more dynamics
embedded in the intermediate frames without which we can
not fully recover the whole sequence.

2) Impact of Spatial Resolution: We can reduce the spatial
resolution of the optical flows and get a more concise
representation. When we need to use the optical flows, we
can just upsample them to the original resolution by bilinear
interpolation. This is a common practice employed in existing
optical flow applications [15]. We are also interested in the
impact of different spatial resolutions for our particle flow
method. Table IV illustrate the reconstruction accuracy for
different choices of resolution using our method.

TABLE IV: Impact of spatial resolution on reconstruction
accuracy for the Isabel dataset.

Downsampling rate PSNR SSIM MSE
1 33.505 0.956 0.074
3 31.037 0.907 0.099
5 30.04 0.848 0.111

We downsample our particle flow by 1-5 times and then
upsample it using bilinear interpolation method for reconstruct-
ing the clips. Generally, we achieve a lower reconstruction

error rate with a finer resolution of the optical flow. This result
matches our expectation and shows this problem cannot be
simply considered as the traditional optical flow problem as
the particles have much more complicated dynamics than rigid
moving body and can only be learned independently.

3) Impact of Data Threshold: Finally, we study the impact of
different choices of lower and upper bounds for data preprocess-
ing. As introduced in Section IV-A, our implementation clips
the data values within specified lower and upper bounds. This
is important because the quality of representation is sensitive
to these thresholds. Table V shows the PSNR reconstruction
accuracy for different combinations of lower and upper bounds.

TABLE V: Impact of data threshold on reconstruction PSNR
for the vortex dataset.

upper bound
5.0 5.5 6.0 6.5 7.0 7.5

lo
w

er
bo

un
d

0.0 32.717 32.284 32.581 32.815 32.934 33.039
0.5 31.884 32.303 32.648 32.862 32.992 33.401
1.0 31.884 32.303 32.648 32.862 32.992 33.401
1.5 30.472 30.868 30.979 31.17 31.257 31.388
2.0 29.947 30.144 30.263 30.428 30.435 30.538
2.5 29.150 29.240 29.400 29.381 29.485 29.501
3.0 28.475 28.607 28.679 28.739 28.882 28.783
3.5 28.475 28.607 28.679 28.739 28.882 28.783
4.0 27.071 27.288 27.422 27.584 27.667 27.760

The general trend is that the PSNR increases while the
range of data (i.e., the difference between the lower and upper
bounds) increases, which is reflected by the larger PSNR values
close to the top-right of Table V. However, for a small lower
bound, this trend reverses. Specifically, we can see that the
lower bound 0.5 outperforms the lower bound 0 for nearly all
values of the upper bounds. Thus, the maximum PSNR occurs
when the lower bound is 0.5 and the upper bound is 7.5 for the
vortex dataset, as shown in Table V. This is probably because
the values near 0 cannot provide useful information about the
dynamics of the system and should be considered as noises.

V. CONCLUSION

In this paper, we have shown a new method to estimate
optical flows for the interpolation of time-varying scientific
data. Our approach can predict the intermediate frames with
higher accuracy and efficiency. We have compared our methods
with several existing optical flow and data reduction methods
and showed that our method can achieve superior performance
in term of accuracy and compression ratio. The results also
show the validity of our assumptions on the model of time-
varying scientific data.

In the future, we would like to improve our model to
tackle larger scale multivariate scientific datasets that have
more complex dynamics. We would like to further investigate
the impact of the parameters, such as temporal and spatial
resolutions and data threshold, and address data noises to
improve the reconstruction accuracy of particle flow. We also
plan to extend our approach to interpolate data in the spatial
domain to further increase the data reduction ratio, while
maintaining data essentials in compressed representations.

VI. ACKNOWLEDGMENT

This research has been sponsored by the National Science
Foundation through grants ICER-1541043 and IIS-1423487.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 265–283, 2016.

[2] A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and T. Peterka. Efficient range
distribution query in large-scale scientific data. In Large-Scale Data
Analysis and Visualization (LDAV), 2013 IEEE Symposium on, pages
125–126. IEEE, 2013.

[3] C.-M. Chen, A. Biswas, and H.-W. Shen. Uncertainty modeling and
error reduction for pathline computation in time-varying flow fields. In
Visualization Symposium (PacificVis), 2015 IEEE Pacific, pages 215–222.
IEEE, 2015.

[4] G. Farnebäck. Two-frame motion estimation based on polynomial
expansion. In Scandinavian conference on Image analysis, pages 363–370.
Springer, 2003.

[5] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov,
P. Van der Smagt, D. Cremers, and T. Brox. FlowNet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 2758–2766, 2015.

[6] D. Fortun, P. Bouthemy, and C. Kervrann. Optical flow modeling and
computation: A survey. Computer Vision and Image Understanding,
134:1–21, 2015.

[7] B. K. Horn and B. G. Schunck. Determining optical flow. Artificial
intelligence, 17(1-3):185–203, 1981.

[8] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
FlowNet 2.0: Evolution of optical flow estimation with deep networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2462–2470, 2017.

[9] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz. Super SloMo: High quality estimation of multiple intermediate
frames for video interpolation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9000–9008, 2018.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[11] S. Liu, J. A. Levine, P.-T. Bremer, and V. Pascucci. Gaussian mixture
model based volume visualization. In Large Data Analysis and
Visualization (LDAV), 2012 IEEE Symposium on, pages 73–77. IEEE,
2012.

[12] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’81, pages
674–679, San Francisco, CA, USA, 1981.

[13] K.-L. Ma and H.-W. Shen. Compression and accelerated rendering of
time-varying volume data. In Proceedings of the 2000 International
Computer Symposium-Workshop on Computer graphics and virtual
reality, pages 82–89, 2000.

[14] M. B. Rodrı́guez, E. Gobbetti, J. A. I. Guitián, M. Makhinya, F. Marton,
R. Pajarola, and S. K. Suter. A survey of compressed GPU-based direct
volume rendering. In Eurographics (STARs), pages 117–136, 2013.

[15] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
8934–8943, 2018.

[16] D. Thompson, J. A. Levine, J. C. Bennett, P.-T. Bremer, A. Gyulassy,
V. Pascucci, and P. P. Pébay. Analysis of large-scale scalar data using
hixels. In Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, pages 23–30. IEEE, 2011.

[17] K.-C. Wang, K. Lu, T.-H. Wei, N. Shareef, and H.-W. Shen. Statistical
visualization and analysis of large data using a value-based spatial
distribution. In Pacific Visualization Symposium (PacificVis), 2017 IEEE,
pages 161–170. IEEE, 2017.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

	Introduction
	Related Work
	Particle Flow Based Representation
	Background
	A Brief Introduction to Optical Flow
	Research Challenges

	Problem Formalization
	The Framework of Our Model
	Assumptions of Our Model
	Particle Flow Based Linear Interpolation
	Particle Flow Learning
	Objective Functions
	Optimization

	Experimental Results
	Datasets and Implementation Details
	Effectiveness of Our Method
	Reconstruction Accuracy
	Statistical Accuracy

	Efficiency of Our Method
	Parameter Analysis
	Impact of Temporal Resolution
	Impact of Spatial Resolution
	Impact of Data Threshold

	Conclusion
	Acknowledgment
	References

